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ABSTRACT Tissues and organs provide the structural and biochemical landscapes
upon which microbial pathogens and commensals function to regulate health and
disease. While flat two-dimensional (2-D) monolayers composed of a single cell type
have provided important insight into understanding host-pathogen interactions and
infectious disease mechanisms, these reductionist models lack many essential fea-
tures present in the native host microenvironment that are known to regulate infec-
tion, including three-dimensional (3-D) architecture, multicellular complexity, com-
mensal microbiota, gas exchange and nutrient gradients, and physiologically
relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major chal-
lenge in tissue engineering for infectious disease research is recreating this dynamic
3-D microenvironment (biological, chemical, and physical/mechanical) to more accu-
rately model the initiation and progression of host-pathogen interactions in the lab-
oratory. Here we review selected 3-D models of human intestinal mucosa, which
represent a major portal of entry for infectious pathogens and an important niche
for commensal microbiota. We highlight seminal studies that have used these mod-
els to interrogate host-pathogen interactions and infectious disease mechanisms,
and we present this literature in the appropriate historical context. Models discussed
include 3-D organotypic cultures engineered in the rotating wall vessel (RWV) biore-
actor, extracellular matrix (ECM)-embedded/organoid models, and organ-on-a-chip
(OAC) models. Collectively, these technologies provide a more physiologically rele-
vant and predictive framework for investigating infectious disease mechanisms and
antimicrobial therapies at the intersection of the host, microbe, and their local mi-
croenvironments.
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Mucosal surfaces lining the gastrointestinal, respiratory and urogenital tracts con-
tinuously interface with the external environment and serve as a barrier against

pathogens, commensals, chemicals, drugs, and toxins. These tissues possess a complex
architecture with multiple cell types organized into three-dimensional (3-D) structures
that facilitate tissue-specific functions. The biological, chemical, and biomechanical
characteristics that define microenvironmental niches along these surfaces provide the
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structure and context in which infection takes place. Pathogens have adapted to detect
specific host structures, polarity, and changes in local environmental stimuli (pH,
temperature, oxygen, nutrients, hormones, physical forces, etc.) to know where and
when to activate specific virulence programs during different infection stages (1–7). A
major challenge in tissue engineering for infectious disease research is recreating in
vivo spatiotemporal properties of dynamic 3-D microenvironments to more accurately
model host-pathogen interactions in the laboratory.

Historically, infectious disease has been commonly studied in vitro by assessing the
interaction of a single microbe with a single host cell type, with the latter grown as flat
2-D monolayers. This reductionist approach has enabled important discoveries and
advanced our understanding of mechanisms that underlie infection and disease.
However, the study of disease in isolation or out of context can change the native
behavior of both host and microbe, thus creating a barrier for researchers to correlate
in vitro and in vivo responses. In this data-rich period where multiple -omics technol-
ogies are being synergistically applied for unparalleled insight into host-pathogen
interactions, it is critical to consider the context in which these investigations are
performed. Reconstructing host microenvironments is key, including 3-D tissue archi-
tecture, multicellular complexity, microbiota composition/localization, oxygen tension,
transport processes, and biomechanical forces (e.g., fluid shear, stretch, compression)
(1, 8–11). Within this context, in vitro models are positioned along a continuum
between 2-D and 3-D, with flat monolayers of a single cell type representing the most
basic system and more complex models located further down the spectrum that
recreate multiple aspects of the native tissue microenvironment (Fig. 1). Since tissues
and organs function in a 3-D context, consideration of proper structure is essential for
development of models that better mimic in vivo responses. Since no current in vitro
model fully accomplishes this task, multidisciplinary teams of biologists, engineers,
physicists, mathematicians, and clinicians are creatively working together to develop
next-generation 3-D models with enhanced predictive capabilities to open new ave-
nues for clinical translation.

Present-day 3-D culture techniques result from a series of progressive advances in
tissue engineering over the past century to better mimic the native structure and
microenvironment of normal and diseased tissues (reviewed in reference 12). Indeed,
long ago the cancer research community recognized that appropriate modeling of the
3-D microenvironment is important for mimicking disease, leading to development and
application of 3-D organoid models developed within or on top of extracellular matrix
(ECM) (12–16). The bidirectional exchange of biological and physical signals between
cells and their microenvironment regulates cell structure/function and is largely man-
ifested by tensile connections between ECM, cell surface receptors (e.g., integrins), and
the cytoskeleton to transduce signals to and from the nucleus (17–31). This structural
network is also engaged by certain invasive pathogens (e.g., Salmonella, Shigella,
Listeria, rotavirus, and influenza virus) that hijack and remodel host cell architecture to
facilitate their internalization, intracellular trafficking, and/or dissemination (9, 32–34).
Similarly, we and others have demonstrated that bacteria also respond to biomechani-
cal forces like fluid shear, which can regulate virulence, gene expression, and/or stress
responses (1–5, 35–47). Indeed, the discovery of biomechanical forces as environmental
regulators of microbial pathogenesis was made by our team almost 2 decades ago with
the finding that fluid shear forces globally reprogram Salmonella gene expression,
stress responses, and virulence (35). Fluid shear also plays a central role in regulating a
number of host responses, including differentiation (48–50).

Although 3-D models have long been applied for cancer research (12–16), they
remained largely unincorporated by the infectious disease community until the late
1990s and early 2000s. As expected for many new ideas in an established field, the use
of 3-D models to study host-pathogen interactions was initially met with skepticism.
The first reports of 3-D models to study viral infections were by Long et al. in 1998
(rhinovirus) and bacterial infections by Nickerson et al. in 2001 (Salmonella enterica
serovar Typhimurium) (11, 51). Recently, infectious disease researchers have broadly
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FIG 1 Recreating the complex intestinal microenvironment to study host-pathogen interactions. (A) In vitro model advancement from
2-D to 3-D by incorporation of physiological factors to better mimic the in vivo environment. (Intestinal lumen, cell, intestine, and
intestinal microbe images are republished from references 398 to 401, respectively, with permission of the publisher.) (B) Three-
dimensional approaches routinely used to develop advanced intestinal models: (a) RWV bioreactor, (b) (republished from reference
307 with permission of the publisher), and (c) OAC (republished from reference 344 with permission of the publisher). (d) Scanning
electron micrograph (SEM) showing an RWV colon model. (Republished from PLoS One [152].) (e) Light micrograph of an enteroid
model. (Republished from Physiological Reports [240].) (f) SEM of a gut-on-a-chip model (republished from reference 341 with
permission of the publisher). (g) Oxygen-dependent host cell colocalization of S. Typhimurium in an RWV 3-D coculture model of
intestinal epithelium and macrophages. Following aerobic culture of bacteria, no macrophages were found, but following microaero-

(Continued on next page)
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embraced 3-D models for studying pathogenesis mechanisms, for biomarker discovery,
and for drug candidate screening. In this review, we highlight key microenvironmental
factors to consider when selecting in vitro 3-D intestinal models to study host-pathogen
interactions. We focus on three key technologies for model development, (i) the
rotating wall vessel (RWV) bioreactor, (ii) ECM-embedded/organoid models, and (iii)
gut-on-a-chip models, and propose a vision for future model advancements. We also
provide proper historical context for use of 3-D cell cultures in studying host-pathogen
interactions, which is finally gaining a critical mass of scientists who understand and
appreciate the value of studying disease in the proper context of tissue form and
function.

MICROENVIRONMENTAL CUES IN HOST-MICROBE INTERACTIONS

Mucosal tissue function and homeostasis are meticulously controlled by complex
bidirectional interactions between cells and their microenvironment (15, 20, 25, 27–29,
52–55). The microenvironment includes 3-D tissue architecture, multiple cell types,
ECM, innate immunity mediators, indigenous microbiota, and physical forces. These
factors are regulatory signals for mucosal pathogens and may be beneficial or detri-
mental for infection (1–5, 8, 35–45, 47, 56–64). Below we address key cellular, biochem-
ical, and biophysical cues that dictate infection outcome and are important consider-
ations when modeling host-enteric pathogen interactions.

Cellular factors. Intestinal mucosal epithelium contains an array of specialized
epithelial and immune cells that work in synergy to protect against infection by (i)
serving as a barrier against luminal toxins, commensals, and pathogens, (ii) sampling
microbial antigens, and (iii) recruiting innate and adaptive immune effectors (65). The
intestine contains multiple epithelial cell types, including enterocytes (absorptive func-
tions), enteroendocrine cells (hormone secretion), Paneth cells (antimicrobial produc-
tion), goblet cells (mucin production), M cells (luminal antigen sampling/induction of
mucosal immunity), Tuft cells (Th2 immunity), and cup cells (unknown function) (66,
67). The intestine also contains immune cells for innate and adaptive responses to
pathogen attack, including macrophages, dendritic cells, and T and B cells, including
those organized in lymphoid structures termed Peyer’s patches, sites of induction of
mucosal immunity. As the body’s largest immune organ, the composition, organization,
and function of the intestine vary by region and consist of integrated cross-
communication networks of different cell types and effectors critical for protection
against pathogens (described in references 59, 65, and 68 to 72).

Epithelial cell polarity establishes barrier function, regulates uptake/transport of
nutrients, and maintains epithelial architecture (65, 73–75). In the intestine, apical
surfaces face the lumen and regions between villi/folds, lateral surfaces face adjacent
cells, and basal surfaces face the basement membrane and lamina propria. Along
Peyer’s patches and isolated lymphoid follicles, the basal side of the follicle-associated
epithelium overlies a subepithelial dome region containing a mixture of immune cells
(76). The distinct biochemical composition (e.g., protein and lipid) of apical and
basolateral surfaces facilitates their specific functions (75). Given that many pathogens
have evolved to recognize surface-specific molecules for attachment and/or to disrupt
barrier integrity to enable their uptake and dissemination (6, 74, 77–79), appropriately
modeling polarity in vitro is critical, as pathogens infect host cells differently depending
on whether they are polarized or nonpolarized (80–83). Maintaining barrier integrity
requires proper expression and localization of tight and adherens junctions. Adherens
junctions are mediated by E-cadherin and catenin interactions, while tight junctions are

FIG 1 Legend (Continued)
bic culture, macrophages were present and either were empty (left inset) or contained internalized bacteria (right inset). Macrophages
(CD45; yellow), Salmonella (green; white when overlaid with CD45), and nuclei (4=,6-diamidino-2-phenylindole [DAPI]; blue) are visible.
Scale bar � 10 �m. (Republished from npj Microgravity [171].) (h) iHIOs injected with E. coli O157:H7. Nuclei (blue), neutrophils (CD11b;
red), and E. coli (green) are visible. Scale bar � 100 �m. (Republished from PLoS One [260].) (i) CVB-infected gut-on-a-chip. CVB (green),
F-actin (red), and nuclei (blue) are visible. (Republished from PLoS One [343].)
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composed of transmembrane proteins (e.g., claudins and occludins) and cytoplasmic
plaque proteins (e.g., zonula occludens). While generally protective, junctional com-
plexes are also exploited by pathogens to facilitate invasion (74) and some enteric
viruses utilize receptors localized to these junctions (77, 78).

Another major cellular component encountered by enteric pathogens is the diverse
microbial community—termed microbiota (referring to microorganisms) or micro-
biome (referring to microbial genomes). The intestinal tract contains prokaryotes,
viruses, archaea, and eukaryotes, some of which protect the host against pathogen
colonization by a variety of mechanisms, including epithelial cell turnover, mucin
synthesis, and triggering bacterial sensors on host cells (84–86). Reciprocal interactions
between host and microbiota contribute to tissue function and homeostasis and
determine microbiota composition, thereby playing an important role in infection and
disease (87). For example, members of the intestinal microbiota regulate production of
antimicrobial peptides by Paneth cells (88) and shape immune responses by regulating
numbers, subsets, and/or functions of T, B, and myeloid cells (65). Microbiota-induced
changes in immunity also determine intestinal microbiota composition (85, 89).

The intestinal microbiota is comprised of �1014 bacteria (�1,000 species), with
Firmicutes and Bacteroidetes most abundant (90–93). Interpersonal variation in intestinal
microbiome occurs, with each individual carrying a subset of the total known micro-
biome (94). Temporal and spatial variation occurs throughout the intestinal tract (95,
96). Increasing data suggest a relationship between an imbalanced intestinal micro-
biome and various diseases, including obesity, inflammatory bowel disorders, and
cancer (97). The importance of the gut microbiota to health is highlighted by successful
clinical application of fecal microbiota transplants from healthy individuals to patients
with recurrent, antibiotic-resistant Clostridioides difficile infections (98–100).

Biochemical cues. Mucosal tissues contain an array of small molecules, including
innate defense mediators that target pathogens and regulate downstream host de-
fenses. Intestinal mucus harbors compounds from the innate and adaptive systems that
protect against microbial insult, including digestive enzymes (e.g., lysozyme), lactofer-
rin, antimicrobial peptides, complement, and antibodies (e.g., secretory immunoglob-
ulin A [sIgA]) (65). In addition, cells of the innate defense system respond to pathogen-
associated molecular patterns (PAMPs) using pathogen recognition receptors (PRRs).
Depending on the pathogen, PRR-mediated signal transduction results in different
cellular outcomes (e.g., cell proliferation, apoptosis, antimicrobial peptide production,
autophagy, and cytokine secretion). Cytokine production leads to recruitment of innate
and adaptive immune effectors to the infection site, representing a bridge between
these two arms of immunity (65, 101).

Mucins are complex mixtures of high-molecular-weight, glycosylated macromole-
cules that bind and remove pathogens and their products (7, 101). Enteric pathogens
sense and respond to cues within mucus and overcome this barrier to reach underlying
epithelium (7). Normal intestinal mucus consists of two layers: an outer layer colonized
by microbes and a sterile inner layer (102–104). The composition and thickness of these
mucin layers vary throughout intestinal regions to accommodate their different func-
tions and microbial burdens. Within the small intestine, the inner and outer mucosal
layers are thinner to facilitate nutrient absorption, with thicker regions found toward
the ileum, where microbial burden is heavier (7). In the colon, both layers are thicker to
accommodate the burden of several trillion commensals (7). The presence of sIgA and
other mucin antimicrobials also serves to reduce bacterial colonization (105).

The ECM is another key contributor to tissue homeostasis. The ECM has historically
been neglected as a signaling entity, but seminal discoveries have revealed the central
role of ECM in regulating tissue architecture/function (20, 53). The ECM is a three-
dimensional noncellular scaffold comprised of proteins (e.g., collagens, elastins, lamin-
ins, and fibronectins), proteoglycans, and water. Two main types of ECM include (i)
interstitial connective tissue matrix, which serves as a cellular scaffold, and (ii) basement
membrane matrix, which separates epithelium from interstitium (106, 107). ECM com-
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ponents also serve as ligands for cell receptors like integrins, which transduce physical
forces into biological responses (mechanotransduction). Additionally, immune re-
sponses are mediated through interactions with the ECM (107, 108). Furthermore, the
ECM controls availability/release of growth factors and other signaling molecules
(hormones and cytokines) (107). The complexity, composition, and structure of ECM are
highly dynamic and specific (as are the biochemical gradients it contains) and depend
on tissue type, developmental stage, and health/disease state (107).

Biophysical forces. The role of physical forces in cell and tissue development/
function is as important as those of genes and biochemical signals (28, 109). Physical
forces regulate cell proliferation, differentiation, and homeostasis (110, 111). Forces
experienced by intestinal cells include fluid shear, pressure (112), and contractile
peristalsis of muscles (113). Hydrodynamic calculations suggest that fluid shear forces
on the exposed epithelial brush border microvilli are �200 times greater than those
between microvilli (�0.01 dynes/cm2) (114).

The cytoskeleton and its linkage with the ECM play an essential role in enabling cells
to sense and respond to biophysical forces. While the governing role of the ECM as a
dynamic signaling entity that regulates tissue form/function is now appreciated, it was
initially considered a purely static scaffold. However, tissue-specific architecture and
function are regulated by the biophysical properties of the ECM (20, 115, 116), which
exerts physical influences transduced by cell surface receptors through the cytoskele-
ton to the nucleus to ultimately alter cellular and molecular properties. These structural
networks are critical for regulating cell shape/architecture and have been modeled
using the principle of tensegrity, which refers to structures that are stabilized under
continuous tension by balancing opposing tension and compression forces (27–29, 31).
The integration of biophysical forces across cells and tissues using this structural
network regulates a wide range of biological processes (e.g., cell proliferation, apopto-
sis, differentiation, adhesion, migration, gene expression, and architecture) (8, 20, 21,
23, 25, 27, 29–31, 55, 117). Accordingly, ECM composition and stiffness are critical
regulators of cellular responses (118, 119). These properties are continuously remod-
eled through the process of “dynamic reciprocity” (17, 20, 53, 117), theorized by Bissell
in 1982 to explain how signaling between the ECM and nucleus regulates tissue
function. This laid the foundation for modern 3-D cell culture approaches used today
(20, 107, 120). Not surprisingly, pathogen-ECM interactions play an important role in
mediating infection (121–126). In addition to impacting the host, physical forces also
globally alter bacterial gene expression, stress responses, and virulence in unexpected
ways to contribute to infection (5, 36–40, 47, 62–64).

MODELING THE MICROENVIRONMENT: 3-D MODELS FOR INFECTIOUS DISEASE

Several cell culture systems exist for the development and application of 3-D models
of human tissues for infectious disease research, including the RWV bioreactor, ECM-
embedded scaffolds (e.g., ECM extracts, purified ECM, or synthetic/semisynthetic hy-
drogels), and organ-on-a-chip (OAC) models. The choice of system to use depends on
several factors, including the experimental question being addressed, technical com-
plexity, and cost and expertise for model development. Different cell types in the native
tissue (including immune cells) can be cocultured in these models to further enhance
physiological relevance. Additionally, a single epithelial cell type can spontaneously
differentiate into multiple epithelial cell types normally found in the parental tissue and
undergo self-assembly into tissue-like structures using all of these 3-D technologies. To
date, most in vitro infection studies have been performed using cell lines; however,
there is a push to develop models using either primary or stem cells to better mimic the
native tissue. To explore the integration of different environmental signals in regulating
infection, a hierarchical series of increasingly complex 3-D model systems comprised of
different cells types can be developed and applied in parallel under differing experi-
mental conditions (e.g., different oxygen tensions and physical forces).

RWV-derived 3-D models. The RWV bioreactor is an optimized form of suspension
culture that facilitates formation of self-organizing 3-D tissue-like aggregates by allow-
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ing cells the spatial freedom to colocalize and self-assemble based on natural affinities
within a low-fluid-shear environment (Fig. 1B, panel a) (8, 127). Fluid shear influences
cell proliferation, differentiation, morphology, and function (30, 114, 128–140). Models
developed within the dynamic RWV environment experience excellent mass transfer of
nutrients/wastes and exhibit enhanced structure, differentiation, function, and multi-
cellular complexity relative to 2-D monolayers (11, 80, 141–154). Along these lines,
observations from the 1970s showed that flotation of collagen gels led to a more
permissive environment for cellular differentiation (12, 155, 156). Moreover, the low-
fluid-shear environment in the RWV is also physiologically relevant to that encountered
by pathogens in low-shear regions of the infected host, including the intestine (38, 114,
129–131). Accordingly, the RWV is also used to culture pathogens to study the role of
fluid shear and mechanotransduction in regulating microbial pathogenesis and host-
pathogen/commensal interactions (1, 35–41, 45–47, 62, 64, 145, 157–167).

The RWV is among the most extensively used approaches to develop 3-D models to
study host-pathogen interactions. It was the first technology used to develop 3-D
models for infection studies with bacterial (Salmonella) and viral (rhinovirus) pathogens
(11, 51). A range of RWV-derived 3-D models have been developed using cell lines, stem
cells, and/or primary cells, including small and large intestine (11, 80, 141, 143, 145, 146,
152, 168–177), lung (144, 147, 178–182), liver (148, 153, 174, 183, 184), bladder (8,
185–187), reproductive tissue (149–151, 188–190), heart (191–193), prostate (142, 186,
194), pancreas (195, 196), nervous tissue (182, 197–199), blood-brain barrier (200), skin
(201), eye (202), bone, joint, or disc (203–207), and tonsil (208), among others. These
studies demonstrated that RWV-derived models exhibit enhanced in vivo-like charac-
teristics, including spontaneous differentiation into multiple cell types that self-
organize into 3-D structures (Fig. 1B, panel d), polarization, appropriate expression/
localization of adherens/tight junctional complexes, metabolic product secretion, gene
expression, cytokine production, responses to antimicrobials and microbial products,
support of commensals, and/or susceptibility to infection (8, 11, 80, 141–153, 168–194,
197–208). In addition, RWV models have been advanced to incorporate immune cells to
study their role in host-microbe interactions (171, 175, 177, 180).

Models are typically initiated by harvesting monolayers, combining cells with porous
ECM-coated microcarrier scaffolds, and loaded into the RWV. Scaffold and ECM porosity
allows the basal side of cells to experience autocrine/paracrine communications, aiding
cellular differentiation/responses in a manner reflecting in vivo tissues. This differs from
monolayers where cells proliferate on impermeable surfaces, thus hindering proper
communications across apical and basolateral surfaces. Additionally, models may be
developed scaffold free or using nonmicrocarrier scaffolds (e.g., decellularized tissues)
for transplantation (179, 181, 209). Once developed, distribution of 3-D models into
multiwell plates lends to their experimental tractability for infection assays, as their
structural/functional integrity remains intact following seeding. Alternatively, patho-
gens or compounds can be directly added to the RWV to study interactions under
physiological fluid shear. One key advantage of RWV culture is the production of large
numbers of cells (�107 to 108 per culture). Below we discuss RWV-derived 3-D models
of human intestinal mucosa.

RWV-derived intestinal models. We began using the RWV to engineer 3-D models
of human intestine for infection studies in the late 1990s after realizing that available
models for studying bacterial pathogenesis lacked multiple aspects of the in vivo
microenvironment (11). RWV-derived 3-D models have enabled the study of host-
microbe interactions relevant to different regions of the intestinal tract, including the
small intestine (11, 169) and colon (80, 143, 145, 146, 152, 171, 172, 175, 177). Imaging
of these models revealed enhanced 3-D architecture relative to monolayers, including
the presence of extensive 3-D folds and microvilli, that more closely resembled what is
observed in vivo (Fig. 1B, panel d). These 3-D models are essentially “inside-out” such
that the apical/luminal side faces the media and the basal side faces the scaffold,
allowing for straightforward introduction of pathogens, toxins, and antimicrobials at
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the apical surface, as commonly occurs in vivo. Collectively, these models have shown
physiologically relevant expression and localization of key cellular components, includ-
ing junctional proteins (e.g., ZO-1, occludin, symplekin, E-cadherin, �-catenin, and
desmosomes), secretion of basal lamina components (e.g., collagen types II, III, and IV,
laminin, vimentin, and fibronectin), brush border formation with villin, and/or mucus
secretion (11, 80, 143, 145, 146, 152, 169, 171, 172, 175, 177). Spontaneous cellular
differentiation into multiple lineages found in the intestinal epithelium is also observed,
including enterocytes, M cells, goblet cells, and/or Paneth cells (enteroendocrine cells
were not evaluated) (11, 80, 146, 152, 171, 175). The presence of multiple cell types
within a model (e.g., epithelial and immune cells) enables study of their combined
effects on infection, and in particular, pathogen colocalization patterns with different
cell types. An example is described below in which an advanced 3-D RWV coculture
model that combined human colonic epithelium with phagocytic macrophages was
used to study infection by different Salmonella pathovars (171). Primary human lym-
phocytes have also been incorporated in a 3-D coculture model of intestinal epithelium
to study Salmonella infection (175).

RWV-derived intestinal models have contributed to the study of a variety of patho-
gens, such as S. Typhimurium (including multidrug resistant ST313), Salmonella enterica
serovar Typhi, enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli
(EHEC), Cryptosporidium parvum, and human enteroviruses, including coxsackievirus B
(CVB) and poliovirus (11, 80, 143, 145, 146, 152, 171, 172, 175). Studies with S.
Typhimurium using 3-D models of small and large intestine displayed marked differ-
ences from monolayers in colonization, tissue morphology, apoptosis, and prostaglan-
din and cytokine expression (11, 80, 152). The responses of these 3-D intestinal models
to S. Typhimurium challenge were highly predictive of in vivo responses in humans/
animals (11, 80, 152), including rapid repair of the small intestine (initial site of
Salmonella pathogenesis) and significant damage to the colon (primary site of patho-
genesis) (210). These models were also the first in vitro systems to challenge the widely
accepted paradigm established using monolayers that the Salmonella pathogenicity
island 1 (SPI-1) type 3 secretion system (T3SS) is required for invasion of intestinal
epithelium (80, 152). Historically, studies with monolayers contradicted in vivo obser-
vations wherein successful animal infections were possible with T3SS SPI-1 mutants
(211, 212), and clinical isolates of Salmonella lacking SPI-1 function were isolated from
foodborne disease outbreaks in patients experiencing gastroenteritis (213). Using a 3-D
intestinal model comprised solely of epithelial cells, Radtke et al. demonstrated that
SPI-1 mutants and a Salmonella mutant lacking all known T3SSs (SPI-1, SPI-2, and the
flagellar system) still exhibited high levels of invasion relative to the wild type (although
approximately 0.5 to 1 log lower) (152). As expected, in monolayers these mutants
exhibited little to no invasion (�10 CFU), a finding which does not reflect in vivo
observations (152). Thus, for the first time, an in vitro intestinal epithelial model was
able to parallel in vivo results by supporting Salmonella invasion independently of SPI-1.
These findings demonstrate the enhanced capability of RWV models to predict in
vivo-like pathogenic mechanisms.

Host-pathogen-commensal and host-commensal interactions have also been inves-
tigated using RWV 3-D intestinal models (172, 177). Commensal microbes naturally
enhance intestinal mucosal barrier function against pathogen colonization through
complex mechanisms not yet fully characterized (214). Naturally occurring probiotic
strains of bacteria are being exploited as a strategy against pathogens to combat
ongoing problems of antibiotic resistance. Treatment of a 3-D intestinal model with
Lactobacillus reuteri or its antimicrobial metabolite, reuterin, before or after challenge
with S. Typhimurium reduced adhesion, invasion, and intracellular survival of this
pathogen compared to findings for untreated cells (172). This was the first study to
report the effect of reuterin on the enteric infection process for any mammalian cell
type. A 3-D intestinal coculture model containing immune cells was used to profile
responses to both free secretory IgA (sIgA) and sIgA complexed with a commensal
strain of E. coli (177). Application of free sIgA to the model induced upregulation of
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MUC2, interleukin 8 (IL-8), and polymeric immunoglobulin receptor (pIgR) secretion.
When sIgA was complexed with E. coli and applied to the model, these responses were
downregulated relative to models treated with free sIgA.

Barrila et al. reported advancement of a 3-D HT-29 colon model to include phago-
cytic macrophages, thereby improving its physiological relevance to study aspects of
the innate immune response to infection (171). Characterization of this coculture model
revealed macrophages integrated between and underneath epithelial cells while pre-
serving epithelial tight junctions and the presence of multiple epithelial cell types,
including enterocytes, M cells, and goblet cells (171). Macrophage phagocytosis was
confirmed by evaluating their ability to engulf inert, bacterium-sized beads. The
contribution of macrophages to Salmonella infection was assessed using S. enterica
pathovars with differing host tropisms and disease phenotypes, including the well-
studied sequence type 19 (ST19) S. Typhimurium strain SL1344, which causes disease in
a wide range of hosts, the multidrug-resistant ST313 S. Typhimurium strain D23580, and
the human-specific S. Typhi strain Ty2. Although classified as S. Typhimurium, ST313
strains display genome degradation similar to that of human-adapted S. Typhi and are
associated with devastating epidemics of blood-borne infections in sub-Saharan Africa
(215). Bacteria were cultured aerobically or microaerobically prior to infection to
simulate oxygen environments encountered before and during intestinal infection.
Colonization of all strains was reduced in the coculture model containing macrophages
relative to the epithelial model, indicating antimicrobial function of macrophages.
Although ST313 strains are considered highly invasive due to the systemic infection
they cause, D23580 was not highly invasive in the 3-D models but instead exhibited
enhanced survival/replication, thus providing clues as to what drives this organism’s
pathogenicity. Pathovar- and oxygen-specific differences in host cell colocalization
patterns were also observed (Fig. 1B, panel g), indicating the ability of these advanced
models to distinguish between closely related Salmonella serovars, thus providing a
unique advantage over models composed of a single cell type (171).

RWV-derived intestinal models are also valuable for investigating host-pathogen
interactions for which conventional cultivation strategies are unable to adequately
model in vivo complexity. Recently, a 3-D colonic model was applied to study human
CVB (146), a pathogen for which in vitro and in vivo models may not fully model the
enteral infection route in humans (146, 216–219). Comparisons between polarized 2-D
and 3-D cells revealed that the 3-D model displayed an enhanced number of viral
particles secreted into the media at early stages of the viral life cycle, which did not
coincide with increased host cell destruction relative to monolayers (146). These data
suggest that 3-D models exhibit an enhancement in nonlytic release of viral particles,
which might result from morphological changes (e.g., enhanced brush border forma-
tion) in 3-D cells. Similarly, another 3-D colonic model was used to study Cryptospo-
ridium parvum, a parasite for which there is a lack of physiologically relevant in vitro and
in vivo models (143). Following C. parvum infection, morphological changes were
observed that were consistent with those from colonic biopsy specimens of infected
patients (143). These studies further emphasize the critical importance of model
complexity and physiological relevance as determinants in enabling host-pathogen
interactions.

In summary, 3-D RWV intestinal models are powerful tractable research tools that
advance the study of host-pathogen interactions. These models can be modularly
altered to incorporate different cell types (including patient-derived cells), ECM, com-
mensal microbiota, physical forces, etc., akin to in vivo scenarios, increasing their
relevance. Their tissue-like architecture, differentiation and polarization, enhanced
expression/localization of junctional proteins, and mucin production are necessary
components of an effective barrier to invading pathogens.

Limitations and future directions of RWV-derived 3-D models. Although many
key structural/functional characteristics of parental tissues have been successfully
recapitulated using RWV models, several limitations remain. The full extent of 3-D
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architecture, multicellular complexity, and array of physical forces of in vivo tissues has
not yet been attained. Ongoing studies are further enhancing these features, plus
incorporating patient-specific immune cells and fecal microbiota, and achieving vas-
cularization and innervation. Models can be costly due to high medium consumption
required for culturing large numbers of cells; however, researchers can scale down.
Although bead porosity facilitates apical/basal cytokine secretion and there is excellent
access to the apical side of the models, there is currently an inability to sample the basal
side. This also prevents measurement of transepithelial electrical resistance (TEER),
which measures electrical resistance across a monolayer as a proxy for assessing barrier
integrity (220). The technique involves using two electrodes, one in contact with cells
on a semipermeable membrane (e.g., apical side) and the other in a different chamber
containing culture medium (e.g., basal side). With most RWV models grown on tiny
(�175 �m) microcarrier beads, these measurements are not currently possible with
off-the-shelf technology. This challenge will likely be surmounted with custom elec-
trode design to accommodate current RWV models or the use of alternative scaffolds.
Currently, immunofluorescence imaging of cytoskeletal and tight junctional markers
represents an alternative method to evaluate model integrity. As these models grow in
size and complexity, introduction of vasculature and nerve cells will be important.
Finally, current models are not easily amenable to chronic infection due to lack of
perfusion once removed from the RWV; however, inclusion of automated waste re-
moval and nutrient delivery during infection will facilitate this approach.

3-D organoid models. The term organoid (“organ-like”) has been used to describe
a variety of 3-D models that resemble in vivo tissues. Historically, this included models
engineered with different technologies using cell lines, stem cells, primary cells, or
tissue explants either embedded in or cultured on top of ECM scaffolds that allow cells
to self-assemble into 3-D structures (8, 12, 143, 145, 146, 169, 171, 221–229). Advances
in stem cell biology led to a recent terminology shift to more specifically define
organoids as 3-D models derived from stem cells, progenitor cells, or primary explants
(222, 230–238). Here we focus on 3-D models cultured within a 3-D ECM that fit this
definition. It is important to emphasize that current models are based on decades of
work by pioneering cell biologists that laid the foundation for the current organoid field
(reviewed in reference 12), representing an advancement and merging of old and new
technologies to enable novel discoveries (12, 228, 239). Models cultivated using thick
ECMs have deep roots in tissue engineering and cancer biology, in which they were
applied to develop advanced models enabling the study of a variety of biological
mechanisms, particularly with regard to understanding the interrelationship between
tissue structure and function (12). This effort resulted in a critical mass of scientists who
now recognize the importance of 3-D models for infection and are bringing elegant
advances to the field but may not be fully aware of their historical context.

A range of different organoid models have been established, including small and
large intestine (229, 230, 232, 234, 240–268), lung (269–274), stomach (275–282), breast
(55, 283, 284), brain (285–287), liver (222, 288, 289), pancreas (222, 290, 291), gallbladder
(292), eye (293), kidney (294), prostate (222, 295, 296) and reproductive tract (297, 298),
among others. Relative to monolayers, these models more closely mimic endogenous
tissues, including organization and spontaneous differentiation of multiple cell types
into physiologically relevant 3-D structures (Fig. 1B, panel e), expression and localiza-
tion of tight junctions, mucus production, polarity, gene expression, cell viability and
proliferation, cytokine production, responses to antimicrobials, support of commensals,
and susceptibility to infection (12, 55, 222, 226, 228–235, 237, 238, 240–266, 269–319).

To develop 3-D organoid models, stem cells or tissue explants containing stem cells
are used. Biopsy specimens may be treated with a dissociation agent and/or mechan-
ically disrupted prior to embedding into ECM. Stem cells isolated from biopsy speci-
mens can be predifferentiated into progenitor cells and further differentiated into
ECM-embedded organoids. Differentiation into committed cell types is enabled by
stepwise supplementation and/or removal of signaling factors during culture (249, 251,
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252, 254, 264, 275, 278, 303, 320–322). Purified ECM components and mixtures can be
used, including Matrigel, a laminin-rich ECM isolated from chondrosarcomas (323, 324).
Synthetic hydrogels help circumvent challenges associated with Matrigel, including
batch-to-batch variation and potential carcinogenic issues connected with tumor-
derived matrices (229).

3-D intestinal organoids. Sato et al. (249) and Ootani et al. (253) independently
reported conditions enabling long-term in vitro culture of mouse intestinal crypts
containing Lgr5� stem cells (as well as purified Lgr5� stem cells that generate villus/
crypt-like structures [249]). These approaches used either Matrigel (249) or collagen
(253) in combination with supplementation of Wnt agonist R-spondin 1. Sato et al. also
included epidermal growth factor to enable crypt growth and noggin to facilitate
passaging (249). These models displayed a polarized, multicellular epithelium (entero-
cytes, goblet cells, Paneth cells, and enteroendocrine cells) organized into a central
lumen lined by villus/crypt-like structures (249, 253). Murine intestinal organoids de-
veloped from single Lgr5� stem cells also developed into these multicellular structures
(249). Subsequently, additional factors were included to enable human colonoid culture
(264).

The NIH Intestinal Stem Cell Consortium defined a standardized nomenclature to
reflect model sources, approaches, and in vitro structures (325). Structures directly
isolated include epithelial sheets, crypts, and organoids (crypts and surrounding mes-
enchymal elements) (325). Various structures produced in vitro from small intestine
include enterospheres (rounded epithelial cyst-like structures), enteroids (formation of
budding crypts from enterospheres), and induced intestinal organoids (multicellular
clusters from induced embryonal or pluripotent stem cells, e.g., induced human
intestinal organoids [iHIOs]) (325). Analogous colonic structures include colonospheres,
colonoids, and colonic organoids (325). It is common to see terms used interchange-
ably, and the nomenclature will likely evolve as the field expands.

Model infection can be accomplished by (i) addition of pathogen directly to the
media (basal side), (ii) microinjection into the lumen (Fig. 1B, panel b), (iii) shearing of
models into fragments followed by pathogen addition, and (iv) complete disruption of
3-D models into flat monolayers followed by pathogen addition (230, 237). Consider-
ation of the normal infection route is critical. Direct addition to the media is easiest;
however, for pathogens that infect via the apical/luminal side, this represents a
nonphysiological route of infection. Microinjection is technically challenging but pref-
erable for pathogens that normally infect from the lumen. Due to challenges associated
with microinjection, there is a growing tendency to mechanically dissociate organoids
into smaller pieces or completely dissociate them into monolayers on Transwell inserts
or plastic (237, 261, 281, 313, 314). This approach has been successful for a number of
studies, including cultivation of norovirus (314), a major advance in the field. Use of
Transwell inserts also facilitates TEER analysis and easier cytokine sampling from the
apical side of the model.

When dissociating 3-D models prior to infection, it is important to note that this
disconnects their form and function, similar to disrupting primary tissue into mono-
layers, and may render them less predictive for some (not all) phenotypes. In this
approach, Transwell inserts are preferable over plastic, as the former display improved
physiological relevance over conventional monolayers (326). Additional profiling
should confirm the extent to which the dissociated model may have dedifferentiated
and additional culture time may be required to reestablish polarity/barrier function. Key
findings should be validated using intact organoids and microinjection to avoid arti-
facts. Additionally, since ECM-pathogen interactions are important for infection dynam-
ics (61), infection surfaces should not contain ECM components not typically found in
that location in vivo (e.g., lumen) if the pathogen would not normally encounter it.

A variety of pathogens have been studied using 3-D enteroid/colonoid/organoid
models, including Salmonella, C. difficile, EHEC, EPEC, enterotoxigenic E. coli (ETEC),
norovirus, rotavirus, enteroviruses, Toxoplasma gondii, and coronaviruses (230, 231,
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233–235, 238, 240–245, 257–263, 266, 268, 307–319, 327). The first infection using iHIOs
was performed using human rotavirus, which lacks robust in vitro culture systems (315).
Both laboratory and clinical rotaviruses replicated in iHIOs and were detected in
epithelial and mesenchymal cells (315). Crypt-derived enteroids also supported rotavi-
rus replication and were used to assess antiviral efficacy against patient isolates (244,
266). Ettayebi et al. made a significant advance by the successful in vitro culture of
human norovirus (HuNoV), known for its lack of a reproducible culture system (314).
The authors initially cultured 3-D intestinal organoids and then dissociated them into
monolayers on plastic or Transwell inserts (314). Successful viral replication was ob-
served and only enterocytes were infected with HuNoVs, regardless of the strain or the
intestinal region from which the model was derived. Additional viral models, including
those using enteroviruses (e.g., CVB, echovirus 11, and enterovirus 71) have identified
the cell-type-specific nature of these infections and the virus-specific nature of innate
immune signaling in response to infection (327).

Enteroid models were also used to study S. Typhimurium and E. coli. Zhang et al.
(240) and Wilson et al. (243) used crypt-derived enteroids to study Salmonella infection.
S. Typhimurium successfully colonized the model (240, 243), and infection responses
aligned well with in vivo observations, including disruption of tight junctions, inflam-
matory responses, and decreased stem cell numbers (240). Forbester et al. infected
iHIOs with S. Typhimurium and observed physiological transcriptomic and cytokine
profiles (257). Injection of E. coli O157:H7 into iHIOs containing neutrophils led to loss
of actin, epithelial integrity disruption, induction of inflammatory cytokines, and neu-
trophil recruitment (Fig. 1B, panel h) (260). In contrast, commensal E. coli was retained
within the lumen, with no loss of model integrity. Infection of colonoid-derived
Transwell models identified MUC2 and protocadherin-24 as early EHEC infection targets
(261). Colonoids were initially cultured in 3-D, followed by dissociation onto Transwells.
Model differentiation correlated with expression of differentiation markers, increased
TEER, and microvilli (261). EHEC preferentially colonized the differentiated model
relative to an undifferentiated control, reducing colonic mucus and inducing damage
to microvilli. A similar approach was applied to study EPEC and ETEC infections in
coculture models containing macrophages (313). Inclusion of macrophages in the
bottom chamber of the enteroid-derived Transwell model enhanced barrier function,
increased epithelial height, and altered cytokine responses relative to the control. EPEC
increased total macrophage numbers and induced projections that extended into the
epithelium, while ETEC induced macrophage extensions across the epithelium to the
apical surface. The presence of macrophages in the coculture model enhanced barrier
function and correlated with decreased numbers of ETEC organisms relative to the
model lacking immune cells.

iHIOs were also used to study C. difficile infection (CDI) (258, 259, 262, 263). CDI
patients secrete acidic mucus consisting primarily of MUC1, with decreased MUC2 and
altered oligosaccharide composition relative to that in healthy patients (259). Injection
of the pathogen alone into iHIOs decreased MUC2, while whole CDI stool supernatant
was required to induce patient-like oligosaccharide composition changes (259). iHIOs
were also used to investigate nontoxigenic and toxigenic strains of C. difficile and
purified toxins TcdA and TcdB (262). Injection of the toxigenic isolate or purified TcdA
led to a loss of barrier function, while iHIOs injected with the nontoxigenic strain
remained intact. Separately, colonoids helped identify Frizzled proteins as receptors for
the TcdB toxin (263).

In summary, 3-D organoid models are advancing mechanistic understanding of
host-microbe interactions due to their enhanced 3-D architecture and presence of
Lgr5� stem cells together with multiple cell types and other functional properties. In
addition, patient organoid “biobanks” have been established and are facilitating fun-
damental research and clinical applications (230, 231, 328, 329). One exciting example
of the applicability of these models is the use of patient-derived organoids to predict
drug responses for cystic fibrosis treatment (222, 231, 250, 307, 329, 330).
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Limitations and future directions of 3-D organoids. As for other models, or-
ganoids have limitations that researchers are working to overcome. Variability and
quality control challenges between experimental preparations includes (i) heterogene-
ity in size, shape, and viability of organoids within a culture and across different
samples, (ii) batch-to-batch variability in Matrigel or other ECM, and (iii) batch-to-batch
variability in growth factor sources. Organoid infection presents challenges as de-
scribed above. Medium cost is high if scaling up due to reliance on specific growth
factors. Incorporation of the full array of cell types found in vivo, including the diverse
collection of immune cells and microbiota, has not been attained. Organoid models
also lack spontaneous M cell formation (251, 331). Pretreatment of in vitro models with
RANKL, exposure to lymphocytes, or infection with pathogens like S. Typhimurium can
induce M cell formation (331–333). Although the mechanism by which M cells spon-
taneously differentiate in RWV models (11, 152, 171, 175) is unknown, it is possible that
the low-fluid-shear suspension culture environment is important, since flotation of ECM
scaffolds was more permissive for differentiation than surface-attached ECM (12, 155,
156). Since organoid models are typically ECM embedded, another limitation is that the
application of the range of biomechanical forces found in vivo is limited; however, an
iHIO model containing functional neurons that enabled peristalsis-like contractions was
reported (256). Combinations of technologies, including organoid-derived 3-D models
developed using the RWV bioreactor (202) and organ-on-a-chip (OAC) (334), are further
expanding these capabilities. TEER measurements are also not currently possible with
intact organoid models due to their size and structure and because they are ECM
embedded. Some studies have dissociated organoids into 2-D on Transwells to facili-
tate these measurements, although there can be disadvantages to using this approach,
as discussed.

Organ-on-a-chip models. Advanced microfluidic and microfabrication technolo-
gies are being broadly applied to develop organ-on-a-chip models that mimic key
aspects of in vivo microenvironments. Rather than focusing on recreating the 3-D
structure of the entire tissue, this technology aims to recreate a microscale model of the
local 3-D architecture and spatial distribution of dynamic tissue interfaces to mimic
tissue- and organ-level functions (335). These devices are designed with micrometer-
sized fluidic channels separated by thin, flexible porous membranes that enable
development of different tissues in adjacent chambers while retaining their ability to
interact (Fig. 1B, panel c) (335–339). These features allow flexibility to model active
processes within a tissue, such as vascular-like perfusion. One exciting functional
feature engineered into the design of many of these devices is the capability to apply
dynamic forces across the tissue to model fluid shear and peristalsis (334, 340–343).

OAC models vary in complexity, ranging from simple systems containing a single
perfused chamber and cell type to more advanced chips that contain several micro-
channels, membranes, and assorted cell types, thereby allowing the reconstruction of
multiple tissue interfaces (335). Microengineering techniques for these devices have
been extensively reviewed (335, 338, 344–349). Chips are commonly made of a silicone
polymer called polydimethylsiloxane (PDMS), which is compatible with many cell types
and has several advantages, including optical transparency for easy imaging, low cost,
flexibility, and high gas permeability (335, 339, 344, 350). PDMS does carry some
disadvantages (discussed below), so other options are being explored (350, 351).
Depending on experimental requirements, chip design and approaches for tissue
development can be altered. Porous membranes can be coated with a variety of
matrices/scaffolds (335, 339, 344, 345, 352). Moreover, 3-D bioprinting techniques are
facilitating complex spatial patterning of cells and scaffolds (352). Although traditional
electrodes used for TEER measurements do not accommodate the small culture area of
most OAC models (220), recent studies have integrated custom electrodes (353).

A variety of OAC platforms have been derived from cell lines, stem cells, and/or
primary cells, including small and large intestine (334, 340–342, 353–356), lung (357–
361), liver (362–369), kidney (370–372), heart (373–377), cornea (378), skin (379),
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nervous tissue (380–383), bone (384, 385), reproductive tract (386), and blood/endo-
thelium and blood-brain barrier (387–393), among others. Once developed, these
models typically retain their structural and functional integrity for several weeks (model
specific), further lending to their experimental tractability. Similar to the other 3-D
models discussed, OAC models exhibit in vivo-like characteristics, including spontane-
ous differentiation into multiple cell types, polarity/barrier function, formation of local
3-D structures (Fig. 1B, panel f), responses to biophysical forces, cytokine production,
gene expression, mucus production, responses to nanoparticles and drugs, support of
commensals, responses to microbial components (e.g., LPS), and/or susceptibility to
microbial infections (334, 335, 339–342, 354–377, 379–394). The application of physical
forces across several of these models alters physiological responses, including changes
in expression/localization of tight junctions, barrier integrity/function, polarity and
differentiation, cell viability, size, morphology, ECM production, integrin expression,
enzyme activity, cytokine responses, chemical/gas exchange gradients, molecular trans-
port, drug responses, bacterial colonization, virion-related cytopathic effects, and/or
formation of 3-D structures (e.g., villi) (334, 340–343, 345, 358, 359, 361, 371, 372, 376,
377, 384, 387, 388, 395). Importantly, several models have been advanced to incorpo-
rate immune cells (342, 359, 396). Below we discuss examples of gut-on-a-chip models
that have been applied to study pathogens or commensals.

Gut-on-a-chip models. The Ingber laboratory developed a series of “mechanically

active” gut-on-a-chip models and applied them to study host-microbe interactions
(340, 342, 343). They initially constructed a PDMS chip containing two microfluidic
channels separated by a flexible, porous ECM-coated membrane (340). Colonic cells
were seeded in the upper channel under low-fluid-shear stress (0.006 to 0.06 dyne/
cm2), and medium also flowed in the bottom chamber. The chip was engineered with
dual vacuum chambers on either side of the main microchamber to enable application
of a physiological cyclic strain across the membrane to mimic intestinal peristalsis. This
led to a highly polarized columnar epithelium and spontaneous formation of 3-D
villus-like folds with basal proliferative cells in the crypt region. Model characterization
revealed well-formed tight junctions, mucus production, and multiple intestinal epi-
thelial cell types (absorptive, goblet, enteroendocrine, and Paneth cells) (340, 341). The
ability of this model to support commensal colonization was assessed using Lactoba-
cillus rhamnosus LGG. Colonization of LGG improved barrier function and was sup-
ported for greater than a week without impacting model integrity, consistent with
previous in vivo observations for probiotics. The model was also applied to study
host-virus interactions using CVB (Fig. 1B, panel i) (343). Exposure of CVB to the apical
surface led to successful viral replication, induction of cytopathic effects (CPE), and
polarized (apical) release of proinflammatory cytokines. Infection of the basal side led
to decreased viral titers and lower CPE, with apical secretion of proinflammatory
cytokines.

The above-described gut-on-a-chip model was further advanced to include immune
cells (peripheral blood mononuclear cells [PBMCs]) and/or endothelial cells (vascular or
lymphatic) (342). This combination of models enabled exploration of the interplay
between these factors (and others) in bacterial overgrowth and inflammation in the
onset of intestinal injury. Synergistic effects between PBMCs and either nonpathogenic
E. coli, pathogenic enteroinvasive E. coli (EIEC), or purified lipopolysaccharide (LPS) led
to altered barrier function and changes in villus architecture. Similarly, the presence of
both PBMCs and LPS led to polarized secretion of basal proinflammatory cytokines,
which stimulates recruitment of additional immune cells in an in vivo scenario. Expo-
sure of the PBMC-containing model to a therapeutic formulation of probiotic bacteria
increased barrier function. The formulation reduced EIEC-induced intestinal damage in
the model lacking PBMCs but in the presence of immune cells only delayed injury
onset. Cessation of cyclic stretching led to enhanced bacterial overgrowth, even under
constant medium flow.

Minireview Infection and Immunity

November 2018 Volume 86 Issue 11 e00282-18 iai.asm.org 14

https://iai.asm.org


Limitations and future directions of OAC models. While there are many advan-

tages to OAC models, there are limitations. Many of these models have multiple cell
types which exhibit enhanced 3-D architecture; however, the vast array of native
heterogeneous cell types found in vivo still need to be incorporated and different
laboratories are optimizing ECM composition and structure. Along these lines, to
our knowledge, no one has yet reported the presence of M cells in gut-on-a-chip
models. There is also a strong push for physically linked multiorgan models, or
“humans-on-chips” (338, 397). Another limitation is the PDMS material commonly
used for chip construction, which can absorb small hydrophobic molecules and
interfere with drug screening and cell signaling analysis (338, 350, 351). There are
also risks of uncross-linked PDMS leaching into the culture if the curing process is
incomplete, causing cell damage (350, 351). While the small number of cells
required can be considered advantageous, in some cases, larger numbers of cells
(106, 107) may be required depending on the experiment. Infection studies typically
involve many permutations, and it is not uncommon to use several multiwell plates
within a single experiment. For example, during colonization assays, samples are
harvested at different times and plated for viable bacteria, while others are pro-
cessed for downstream analyses. Thus, it will be beneficial to incorporate multiple
3-D model systems into infectious disease research depending on the experimental
question being addressed, as no single model system is sufficient to address all
infectious disease experimental scenarios.

CONCLUSIONS

Over the past 2 decades, a multidisciplinary consortium of researchers has been
creative in developing 3-D intestinal models of increasing complexity that better mimic
the biological, chemical, and physical microenvironments of the endogenous tissue for
studying host-microbe interactions. These models have been developed using a variety
of approaches and are being applied to understand the dynamic relationship between
the host, pathogens, and commensals that dictate infection outcome and for devel-
opment of new treatment/prevention strategies. Collectively, these models have ush-
ered in a new era for infectious disease research by offering predictive in vitro
translational platforms. Indeed, the establishment of 3-D intestinal models and their
application as human surrogates for infectious disease research have provided specific
examples of how the study of microbial pathogenesis can be advanced by using
appropriate, biologically meaningful models.

We are still in the infancy of learning how to build more realistic 3-D tissue models,
and there remain an endless number of questions and hypotheses to test about how
infection actually happens in the body. Continued model advancement to better
recapitulate the in vivo tissue microenvironment coupled with the application of
multiple 3-D model systems will lead to increased translation of research discoveries to
practical and significant outcomes. Such advances will be pivotal for the success of
personalized medicine approaches using patient-specific normal and diseased cells and
of incorporation of the full repertoire of immune cells to predict clinical correlates of
protection for vaccine development.

Toward this goal, we must deeply comprehend 3-D tissue/organ structure and
function, the associated microenvironment, and the microorganisms to be studied. It is
likewise important that we are aware of and acknowledge the rich history and work of
researchers who have long applied 3-D tissue modeling to study host-pathogen
interactions. Accordingly, we should revisit past research in the field to help us
understand and guide our direction. While it remains a daunting task to gain a
complete understanding of infectious disease, the alignment of multidisciplinary re-
search teams dedicated to the establishment of 3-D models that reconstruct the
architecture and function of the in vivo organ and their application for host-pathogen
interaction studies make this an exciting time to be a scientist!
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